Paleonews

Il blog dedicato ai Paleontologi !!!!

2009-07-17 – USA: Terizinosaur, Nothronychus graffami

Giant Clawed Dinosaur Unearthed in Utah Desert

Jennifer Viegas, Discovery News

July 14, 2009 — A multi-institutional team of scientists this week reports the discovery of a giant new dinosaur in Utah, Nothronychus graffami, which stood 13 feet tall and had nine-inch-long hand claws that looked like scythes.

SLIDE SHOW: Therizinosaur: A Dino With Nine-Inch Nails

 

Its skeleton, described in the current issue of Proceedings of the Royal Society B, represents the most complete remains ever excavated of a therizinosaur, meaning “reaper lizard.” It is one of only three such dinosaurs ever found in North America.

Lead author Lindsay Zanno told Discovery News that therizinosaurs, including the new Utah species, “are unusual in that they have small heads with a keratinous beak at the front of the mouth — the same material as the beak of modern birds — and small leaf-shaped teeth.”

“Their bellies are proportionally enormous, supporting large guts,” added Zanno, who is a researcher in the Department of Geology at The Field Museum. “They have greatly enlarged claws on their hands, short legs and tails, and four-toed feet.”

Therizinosaurs are theropod predatory dinosaurs, a group that includes the legendary Tyrannosaurus rex. The newly discovered 92.5-million-year-old Utah dinosaur was no lightweight either. As Zanno said, “You wouldn’t want to run into this guy in a dark alley.” But its teeth, beak, gut and other anatomical characteristics suggest it was an omnivore that mostly feasted on plants.

Co-author David Gillette, curator of paleontology at the Museum of Northern Arizona, told Discovery News the formidable-looking claws on Nothronychus graffami probably weren’t used to kill other large animals, but instead might have tackled “digging into termite mounds, mucking on the bottom of a lake or pond like a goose or moose, and raking leaves into its mouth from a mangrove forest like a ground sloth.”

To better understand the dietary evolution of theropods, the researchers studied information on 75 other species within this group. They determined therizinosaurs experienced an early evolutionary split from the Maniraptora, which includes modern birds and their closest extinct relatives. One such relative was Velociraptor, a carnivore that probably kicked prey to death with its large hind foot claws.

The new Utah dinosaur therefore suggests that “iconic predators like Velociraptor, one of the dinosaurian villains in the movie Jurassic Park — may have evolved from less fearsome plant-eating ancestors,” according to the scientists.

Since the very meat-loving Velociraptor emerged some 20 million years after plant-chomping Nothronychus graffami, it’s now thought that some dinosaurs might have first been carnivores that evolved into omnivores or herbivores, which re-evolved back into meat-eaters.

Paleontologists aren’t sure why some dinosaur lineages may have see-sawed back and forth with their diets.

“Our current thoughts are that in gaining the ability to eat more than just meat, maniraptorans may have been able to invade new niches in the ecosystem that were unavailable to them before,” Zanno said. “In other words, they may have been able to find a new way of living in the ecosystem and new resources to exploit that gave them an advantage and allowed them to diversify into new forms.”

Aside from what it reveals about dinosaur diets, the new Utah species is significant because of where it was found: in marine sediments that would have been between 60 and 100 miles away from the closest shoreline. The ancient sea is now part of a desert. Merle Graffam, a member of the excavation team, found the dinosaur while searching for sea-dwelling animals. The dinosaur was named after him.

“A big mystery is how this animal — either alive or as a carcass — could get so far out to sea without being torn apart by predators and scavengers,” Gillette said. “This ecosystem had at least five species of plesiosaurs and many sharks and predatory, scavenging fish.”

He added, “Maybe (the dinosaur) was stranded at sea and struggled for a few days before drowning and sinking to the bottom.”

Paul Heinrich, a research associate at the Louisiana Geological Survey, offers another explanation. He thinks such complete dinosaur skeletons recovered in seaways may have rafted out to open water on “floating islands” after storms.

The recovered Utah dinosaur’s remains are now on public display at the Museum of Northern Arizona. The exhibit, Therizinosaur: Mystery of the Sickle-Claw Dinosaur, will close in September before moving to the Arizona Museum of Natural History in Mesa.

http://dsc.discovery.com/news/2009/07/14/sickle-claw-dinosaur.html

Annunci

luglio 17, 2009 Posted by | - R. Dinosauri, - Teropodi, 1 Cretaceo, America Northern, An. Vertebrates, Mesozoic, P - Ritrovamenti fossili, Paleontology / Paleontologia | , , | Lascia un commento

2009-07-13 – New Theropod: Kemkemia auditorei (Cau & Maganuco, 2009)

Congratuazioni agli autori !!!

Ecco i post sul blog Theropda (A.Cau):

luglio 13, 2009 Posted by | - R. Dinosauri, - Teropodi, 1 Cretaceo, Africa, An. Vertebrates, Articolo sc. di riferimento, Blogs, Lang. - Italiano, P - Ritrovamenti fossili, Paleontology / Paleontologia, Theropoda | , , , , , | Lascia un commento

2009-07-12 – Australia: World’s Oldest Dinosaur Burrow


Download full size image

World’s Oldest Dinosaur Burrow Discovered In Australia

Posted on: Friday, 10 July 2009, 16:20 CDT | Related Video

Paleontologists have discovered the world’s oldest dinosaur burrows in Australia.  The 106-million-year-old burrows are the first to be found outside of North America, and were much closer to the South Pole when they were created.

In total, three separate burrows have been discovered, the largest of which was about 6ft. long.  Each burrow had a similar design and was just large enough to contain the body of a small dinosaur.

The discovery supports the theory that dinosaurs living in harsh, cold climates burrowed underground to survive.

The only other known dinosaur burrow was discovered in 2005 in Montana, and contained the bones of an adult and two young dinosaurs of a small new species called Oryctodromeus cubicularis. Two years after its discovery, scientists dated the burrow from 95 million years ago.   

The older burrows in Australia were found by one of the researchers who made the original Montana discovery.

“Like many discoveries in paleontology, it happened by a combination of serendipity and previous knowledge,” said Anthony Martin of Emory University in Atlanta.

“In May 2006, I hiked into the field site with a group of graduate students with the intention of looking for dinosaur tracks. We did indeed find a few dinosaur tracks that day, but while there I also noted a few intriguing structures,” he told BBC News.

Martin returned to the site, known as Knowledge Creek about 150 miles from Melbourne, to study the structures in July 2007 and again in May of 2009.

He was astonished at what he found.

“I was scanning the outcrop for trace fossils, and was very surprised to see the same type of structure I had seen in Cretaceous rocks of Montana the previous year,” said Martin.

That original structure was the burrow of O. cubicularis.

“So to walk up to the outcrop and see such a strikingly similar structure, in rocks only slightly older, but in another hemisphere, was rather eerie,” Martin said.

Within the rock, which is part of the Otway group of rocks that have produced a large diversity of vertebrate fossils, Martin discovered three separate burrows less than 10 feet apart, two of which formed a semi-helix twisting down into the rock.

The largest and best-preserved burrow turns twice before ending in a larger chamber. Dubbed tunnel A, it is more than 6 feet in length. Martin calculates that an animal weighing around 22 pounds would have created each burrow. Twisting burrows can help keep predators at bay and provide a steady temperature and humidity environment.

Alligators, aardwolves, coyotes, gopher tortoises and striped hyenas are among the modern animals that make such burrows.

Although Martin isn’t sure which species of dinosaur made the burrows, he noted how similar their designs are to the burrow created by O. cubicularis.

A number of small ornithopod dinosaurs, which stood upright on their hind legs and were about the size of a large iguana, were believed to have lived in the area during the same time in the Cretaceous period.

Martin has ruled out a number of other sources that could have created the burrows.

The fact dinosaurs created them makes sense, he said.

Australian researchers first proposed two decades ago that some dinosaurs might have created burrows to survive harsh climates they couldn’t escape from by migrating.

“It gives us yet another example of how dinosaurs evolved certain adaptive behaviors in accordance with their ecosystems,” Martin said.

“Polar dinosaurs in particular must have possessed special adaptations to deal with polar winters, and one of their behavioral options was burrowing. It provides an alternative explanation for how small dinosaurs might have overwintered in polar environments.”

Martin hopes that paleontologists will be on the look out for dinosaur burrows, and for dinosaurs that are physically adapted to burrowing into soil.

The findings were published in the journal Cretaceous Research.

Image 1: Drawing by James Hays, Fernbank Museum

Image 2: Following his Montana discovery of the first trace fossil of a dinosaur burrow, Emory University paleontologist Anthony Martin has found evidence of older, polar dinosaur burrows in Victoria, Australia.

On the Net:

Source: redOrbit Staff & Wire Reports

luglio 12, 2009 Posted by | - R. Dinosauri, 1 Cretaceo, An. Vertebrates, Mesozoic, Oceania, P - Impronte, P - Ritrovamenti fossili, Paleontology / Paleontologia | , , , | Lascia un commento

2009-09-03 – Australia: 3 nuovi dinosauri (Australia, 3 new dinosaurs)

Fossili di 3 grandi dinosauri scoperti in Australia

SYDNEY (Reuters) – Fossili di tre nuove specie di dinosauri sono stati scoperti in Australia, di cui quello di un carnivoro più grande del Velociraptor dei film di Jurassic Park, lasciando intendere che l’Australia potrebbe avere un passato preistorico più complesso di quanto si pensi.

I tre fossili, due di erbivori e uno di un carnivoro — i primi resti di grandi dinosauri rinvenuti dal 1981 — sono stati trovati nel Queensland e risalgono al Cretaceo, 98 milioni di anni fa.

“Questa scoperta ci fa conoscere non solo due affascinanti giganti dal collo lungo del continente australiano antico, ma anche il nostro primo grande predatore” ha detto oggi il paleontologo John Long, del Museo Victoria.

Il paleontologo Ben Kear dell’Università La Trobe di Melbourne ha detto che la scoperta apre la strada a nuovi studi sui dinosauri australiani e il loro habitat.

“L’Australia è una delle grandi risorse poco sfruttate per la comprensione della vita nel periodo dei dinosauri”, ha detto Kear. “Questo … farà sicuramente crescere l’interesse nelle finora incomplete ma rilevanti scoperte in questo continente”.

fonte:

——————————————————–

Triple Fossil Find Puts Australia Back On The Dinosaur Map

ScienceDaily (July 3, 2009) — Scientists have discovered three new species of Australian dinosaur discovered in a prehistoric billabong in Western Queensland.

Artistic representations of the three new Australian dinosaur taxa: Australovenator (top); Wintonotitan (middle); Diamantinasaurus (bottom). (Credit: Artwork by: T. Tischler, Australian Age of Dinosaurs Museum of Natural History / Scott A. Hocknull, Matt A. White, Travis R. Tischler, Alex G. Cook, Naomi D. Calleja, Trish Sloan, David A. Elliott. New Mid-Cretaceous (Latest Albian) Dinosaurs from Winton, Queensland, Australia. PLoS ONE, 2009; 4 (7): e6190 DOI: 10.1371/journal.pone.0006190)

Artistic representations of the three new Australian dinosaur taxa: Australovenator (top); Wintonotitan (middle); Diamantinasaurus (bottom). (Credit: Artwork by: T. Tischler, Australian Age of Dinosaurs Museum of Natural History / Scott A. Hocknull, Matt A. White, Travis R. Tischler, Alex G. Cook, Naomi D. Calleja, Trish Sloan, David A. Elliott. New Mid-Cretaceous (Latest Albian) Dinosaurs from Winton, Queensland, Australia. PLoS ONE, 2009; 4 (7): e6190 DOI: 10.1371/journal.pone.0006190)

Reporting on July 3 in the open-access, peer-reviewed journal, PLoS ONE, Scott Hocknull and colleagues at the Queensland Museum and the Australian Age of Dinosaurs Museum of Natural History describe the fossils of three new mid-Cretaceous dinosaurs from the Winton Formation in eastern Australia: two giant, herbivorous sauropods and one carnivorous theropod, all of which are to be unveiled in Queensland on July 3. The three fossils add to our knowledge of the Australian dinosaurian record, which is crucial for the understanding of the global paleobiogeography of dinosaurian groups.

Australia’s dinosaurian fossil record is extremely poor, compared with that of other similar-sized continents, such as South America and Africa. However, the mid-Cretaceous Winton Formation in central western Queensland has, in recent years, yielded numerous fossil sites with huge potential for the discovery of new dinosaurian taxa. Between 2006 and 2009, extensive excavations have yielded many well-preserved dinosaur fossils, as well as the remains of other contemporaneous fauna.

In a single, comprehensive, publication, Hocknull and colleagues describe the remains of three individual dinosaur skeletons, found during joint Australian Age of Dinosaurs Museum and Queensland Museum digs in two different sites in the Winton Formation. They represent three new genera and species of dinosaur: two giant herbivorous sauropods and a carnivorous theropod.

The carnivore, named by the authors on the paper Australovenator wintonensis (nicknamed “Banjo”) is the most complete meat-eating dinosaur found in Australia, to date and sheds light on the ancestry of the largest-ever meat-eating dinosaurs, the carcharodontosaurs, a group of dinosaurs that became gigantic, like Giganotosaurus.

“The cheetah of his time, Banjo was light and agile,” said lead author Scott Hocknull. “He could run down most prey with ease over open ground. His most distinguishing feature was three large slashing claws on each hand. Unlike some theropods that have small arms (think T. rex), Banjo was different; his arms were a primary weapon.

“He’s Australia’s answer to Velociraptor, but many times bigger and more terrifying.”

The skeleton of Australovenator solves a 28-year-old mystery surrounding an ankle bone found in Victoria, which was originally classified as a dwarf Allosaurus, although this classification remained controversial until the discovery of Australovenator—the researchers are now able to confirm that the ankle bone belonged to the lineage that led to Australovenator.

The two plant-eating theropods, named Witonotitan wattsi (“Clancy”) and Diamantinasaurus matildae (“Matilda”), are different kinds of titanosaur (the largest type of dinosaur ever to have lived). While Witonotitan represents a tall, gracile animal, which might have fitted into a giraffe-like niche, the stocky, solid Diamantinasaurus represents a more hippo-like species.

All three dinosaurs are nicknamed after characters from a world-famous, Australian poet. Banjo Patterson composed Waltzing Matilda in 1885 in Winton, where the song was also first performed (and where the fossils were discovered). Waltzing Matilda is now considered to be Australia’s national song.

In a quirky twist of fate, the song Waltzing Matilda describes the unfortunate demise of a swag-man, who steals a jumbuck (sheep) but is driven to leap into a billabong (an Australian word for a small oxbow lake) to avoid being captured by the police. He ends up drowning in the billabong alongside the stolen sheep.

Banjo and Matilda were found buried together in what turns out to be a 98-million-year-old billabong. Whether they died together or got stuck in the mud together remains a mystery; however, echoing the song, both predator and possible prey met their end at the bottom of a billabong, 98 million years ago. This shows that processes that were working in the area over the last 98 million years are still there today. “Billabongs are a built-in part of the Australian mind,” said Hocknull, “because we associate them with mystery, ghosts and monsters.”

The finding and documentation of the fossils was a 100% Australian effort. Both Matilda and Banjo were prepared by Australian Age of Dinosaurs Museum thanks to thousands of hours of volunteer work and philanthropy.

“This is the only place in Australia where you can come off the street and be taught to be a palaeontologist and find, excavate and prepare your own part of Australian natural history,” said Hocknull. The dinosaurs will now be part of a museum collection and this effort will enable future generations of scientists to be involved in a new wave of dinosaur discoveries and to bring the general public in touch with their own natural heritage.”

This collaborative effort links closely with PLoS ONE’s philosophy of making science freely accessible to the general public. “One of my major motivations for submitting to PLoS ONE was the fact that my research will reach a much wider community, including the hundreds of volunteers and public who gave their time and money to the development of natural history collections,” said Hocknull. “They are the backbone of our work (excuse the pun) and they usually never get to see their final product because they rarely subscribe to scientific journals.”

All three new taxa, along with some fragmentary remains from other taxa, indicate a diverse Early Cretaceous sauropod and theropod fauna in Australia, and the finds will help provide a better understanding of the Australian dinosaurian record, which is, in turn, crucial for the understanding of the global palaeobiogeography of dinosaurian groups.

The authors agree that even though hundreds of bones have already been found at the site, these fossils are just the tip of the iceberg. “Many hundreds more fossils from this dig await preparation and there is much more material left to excavate,” they said. Australian Age of Dinosaurs Museum and Queensland Museum staff and volunteers will continue to dig at this and other sites in 2010.

The fossils will be unveiled at the Australian Age of Dinosaurs Museum of Natural History in Queensland, Australia, July 3 by Anna Bligh, the Premier of Queensland. Stage 1 of the museum, a non-profit, volunteer-driven, science initiative that aims to bring Australian dinosaurs to the world, will also be opened by Ms Bligh on July 3.


Journal reference:

  1. Scott A. Hocknull, Matt A. White, Travis R. Tischler, Alex G. Cook, Naomi D. Calleja, Trish Sloan, David A. Elliott. New Mid-Cretaceous (Latest Albian) Dinosaurs from Winton, Queensland, Australia. PLoS ONE, 2009; 4 (7): e6190 DOI: 10.1371/journal.pone.0006190

Source: http://www.sciencedaily.com/releases/2009/07/090703070846.htm

luglio 3, 2009 Posted by | - R. Dinosauri, - Sauropodi, - Teropodi, 1 Cretaceo, America Northern, An. Vertebrates, Articolo sc. di riferimento, FREE ACCESS, Lang. - Italiano, Mesozoic, P - Ritrovamenti fossili, Paleontology / Paleontologia | , , , , , | Lascia un commento

2009-06-19 – Mongolia: Nuovo Psittacosauro (new Psittacosaur)

Parrot-like dinosaur found in Mongolia

A new dinosaur resembling a giant parrot has been discovered in Mongolia.

 By Chris Irvine
Published: 7:00AM BST 17 Jun 2009
New dinosaur, Psittacosaurus gobiensis: Parrot-like dinosaur found in Mongolia
A new dinosaur, named Psittacosaurus gobiensis, meaning ‘parrot dinosaur’ has been discovered in Mongolia

The creature, Psittacosaurus gobiensis whose name means “parrot lizard”, is thought to have lived about 110 million years ago.

Psittacosaurs are noted for being the most species-rich dinosaur genus with at least nine different species, including the latest found in the Gobi Desert, a famous dinosaur graveyard.

Features of the dinosaur included a near perfect skull, strong jaw muscles and a powerful biting and crushing bill – showing that it evolved structures like those in today’s parrots.

The three feet long psittacosaurs may also have had a diet dominated by nuts and seeds, owing to the presence of many large stomach stones, according to the findings published in Proceedings of the Royal Society B: Biological Sciences.

Prof Paul Sereno, a Biologist from the University of Chicago, said analysis of its skull showed it chewed its food in a similar way to modern parrots.

“These and other features, along with the presence of numerous large stomach stones, suggest that psittacosaurs may have had a high-fibre, nut eating diet,” he said.

Its short snout just a third of the skull length was different to most dinosaurs, giving the skull its parrot-esque profile.

They ate nothing but plants and walked normally on two legs but could reach the ground with their three-fingered hands.

They were good runners and were extremely successful in Asia about 100 million years ago, during the Cretaceous Period.

“Psittacosaurs are all relatively small in body size, ranging from one to two metres in body length. Their geographic range is limited to central Asia, and their temporal range may be as narrow as 10-20 million years in the mid Cretaceous,” said Prof Sereno.

It is a member of the Ceratopsia group of herbivorous, beaked dinosaurs, which also include the more famous Triceratops.

source: telegraph.co.uk

———————————

Other links: click here

giugno 19, 2009 Posted by | 1 Cretaceo, Articolo sc. di riferimento, Asia, Mesozoic, P - Preservazione eccezionale, P - Ritrovamenti fossili | , , , , | Lascia un commento

2009-05-20 – Montana, USA: Sentiero dei Dinosauri (Dinosaur Trail)

Dinosaur Trail (Montana): il Sentiero dei Dinosauri compie 5 anni

Ci sono voluti almeno 150 milioni d’anni ed oggi il Dinosaur Trail nel Montana, celebra il suo quinto anniversario enumerando ben 15 località archeologiche, con musei e siti paleontologici, in ben 12 comunità dell’est e del centro del Montana.

Il Montana Dinosaur Trail è un percorso adatto a famiglie con bambini e ad appassionati di paleontologia: offre la possibilità di ammirare, toccare ed imparare tutto il mondo fossile esistente nel Montana, risalente ad oltre 75 fino a 150 milioni d’anni fa.

Ogni località lungo il Dinosaur Trail dispone di mostre con fossili o repliche di dinosauri trovati nelle specifiche zone. Tra gli esemplari, anche Leonardo – un dinosauro mummia – uno dei meglio conservati al mondo, in località Malta; il Peck Rex uno scheletro intero originale del famoso T-Rex a Fort Peck; la più grande collezione di dinosauri ritrovati negli Stati Uniti, presso la località di Bozeman, ed infine le prime ossa del cucciolo di dinosauro del Nord America a Bynum e lo scheletro di Anatotitan in mostra a Ekalala.

Nel 2008 almeno 267.000 turisti hanno incluso il Dinosaur Trail nel loro viaggio nel Montana provando l’esperienza di 15 siti ben strutturati. Un terzo di questi visitatori sono internazionali. Questo a riprova che il Dinosaur Trail è veramente un’attrattiva eccezionale!

Ma la cosa ancora più intrigante è la possibilità di acquistare un Montana Dinosaur Trail Prehistoric Passport per soli 5 $, acquistabile anche direttamente nel sito www.mtdinotrail.org. Solo 2 $ il costo aggiuntivo con ordine in internet.

Le attrattive e le località del DinoTrail:
Blaine County Museum, Chinook
Carter County Museum, Ekalaka
Fort Peck Field Station of Paleontology, Fort Peck
Fort Peck Interpretive Center, Fort Peck
Garfield County Museum, Jordan
Great Plains Dinosaur Museum and Field Station, Malta
H. Earl Clack Memorial Museum, Havre
Makoshika Dinosaur Museum, Glendive
Makoshika State Park, Glendive
Museum of the Rockies, Bozeman
Old Trail Museum, Choteau
Phillips County Museum, Malta
Rudyard Depot Museum, Rudyard
Two Medicine Dinosaur Center, Bynum
Upper Musselshell Museum, Harlowton

fonte: link

maggio 20, 2009 Posted by | - R. Dinosauri, 1 Cretaceo, America Northern, An. Vertebrates, Lang. - Italiano, Mesozoic, Paleontology / Paleontologia, Places | , , , | Lascia un commento

2009-05-10 – Utah, USA: ritrovata una tartaruga fossile incinta (fossil pregnant turtle)

Rare prehistoric pregnant turtle found in Utah

At least three eggs are visible from the outside of the fossil, and Montana State University researchers this week have been studying images taken from a CT scan in search of others inside.

Montana State graduate student Michael Knell says the turtle was probably about a week from laying her eggs when she died and became entombed for millions of years in sandstone.

The fossil was found in 2006 in a remote part of Grand Staircase-Escalante National Monument. The eggs weren’t discovered until after it sat in storage for two years and was being re-examined by a volunteer.

This image provided Montana State University shows CT technician, Tanya Spence preparing to run a 75 million-year-old turtle fossil through a CT scanner at Deaconess Hospital in Bozeman, Mont. (AP Photo/Montana State University, Kelly Gorham)

This image provided Montana State University shows CT technician, Tanya Spence preparing to run a 75 million-year-old turtle fossil through a CT scanner at Deaconess Hospital in Bozeman, Mont. (AP Photo/Montana State University, Kelly Gorham)

maggio 10, 2009 Posted by | - Rettili, 1 Cretaceo, America Northern, An. Vertebrates, Articolo sc. di riferimento, Mesozoic, P - Preservazione eccezionale, P - Ritrovamenti fossili, Paleontology / Paleontologia, X - Nature | , , , , , , , , , | Lascia un commento

2009-05-09 – World’s largest ornithomimosaurus in China

World’s largest ornithomimosauris to be exhibited in China

www.chinaview.cn 2009-05-08 20:44:55
LANZHOU, May 8 (Xinhua) — The world’s largest ornithomimosauris, a dinosaur named Beishanlong Grandis discovered in northwest China’s Gansu Province, will get its first public show in July, experts told Xinhua Friday.    The Beishanlong Grandis found about three years ago was recognized in April as the largest of the world’s ornithomimosauris in terms of size by Chinese and American palaeontologists and it will be seen by the public for the first time in July at a dinosaur exhibition in Lanzhou Stadium in Gansu, said Li Daqing, director of the Palaeontological Center, with Gansu Geology Bureau.

    The Beishanlong Grandis was both longer and heavier than the previous largest ornithomimosauris named Gallinimus found in Mongolia, Li said.

    The dinosaur is at least 100 million years old and was discovered in June 2006 at Beishan in Yujingzi Basin in Gansu, Li said.

    American palaeontologists Peter J. Makovicky from the Field Museum of Natural History in Chicago and experts from New York’s Natural History Museum joined the research.

    The Beishanlong Grandis was eight meters long and 626 kilograms while the Gallinimus was four meters long and 440 kilograms, Li said.

    The experts had jointly published an article on the research in the Proceedings of the Royal Society, published in London, in April, Li said.

    They found the dinosaur was only a 14-year-old when it died and experts believe an adult Beishanlong Grandis could be even larger, Li said.

    The Beishanlong Grandis was a herbivorous dinosaur with 15-centimeter-long, strong forepaws which lived during the Cretaceous period in the warm and humid basin. It could dig and rake, searching for food, Li said.

    The discovery of the Beishanlong Grandis has attracted the attention of the world’s experts and further research will be done on its living habits and evolution, Li said.

 
Editor: Wang Guanqun

maggio 9, 2009 Posted by | - R. Dinosauri, - Teropodi, 1 Cretaceo, An. Vertebrates, Articolo sc. di riferimento, Mesozoic, Mostre & Fiere, Paleontology / Paleontologia, Places | , , , , | Lascia un commento

2009-05-03 – Dinamite per liberare Dinosauri (Dynamite to reveal Dinosaurs )

Dynamite Used To Reveal New Layer Of Dinosaur Fossils ScienceDaily

What do you do when you have a fossil quarry that has yielded some of the most important and rarest of dinosaur fossils in North America, but the fossil-bearing layer of rock is tilted at 70 degrees and there is so much rock that not even jackhammers can get you to the fossils any longer?

2009-04-30-sauropod-skull 

That was the problem facing Dinosaur National Monument at a Lower Cretaceous dinosaur quarry — the one that has produced the only complete brontosaur skulls from the last 80 million years of the Age of Dinosaurs in North America. The site is so scientifically important that excavations cannot be stopped, yet there was no way to reach the bones.

Dave Larsen, Steve Bors, and Tim George, a blasting team from Rocky Mountain National Park, rode to the rescue in mid-April. Over several days these skilled employees, using their expertise with explosives, blew away the rock covering the fossils and exposed a significant amount of the fossil-bearing layer so that excavation can begin again this year. Without their talents, scientifically important fossils would have remained locked underground in their stony mausoleum.

Fossil excavation often uses small tools, either pneumatic or manual, to carefully remove rock from delicate fossils. However, in some instances, instruments that are more powerful are needed. Although explosives might seem extreme, in the right setting and in the right hands, they are the right tool for the job — staff at Dinosaur National Monument can certainly testify to that.

source: http://www.sciencedaily.com/releases/2009/04/090429131935.htm

maggio 3, 2009 Posted by | - R. Dinosauri, 1 Cretaceo, America Northern, An. Vertebrates, Mesozoic, P - Ritrovamenti fossili, Paleontology / Paleontologia | , , , | Lascia un commento

2009-05-02 – Estratte proteine da un dinosauro di 80 milioni di anni (Brachylophosaurus, Dinosaur, Proteins, soft tissue)

Proteins, soft tissue from 80-million-year-old dino support theory that molecules preserve over time

A North Carolina State University paleontologist has more evidence that soft tissues and original proteins can be preserved over time – even in fossilized remains – in the form of new protein sequence data from an 80 million-year-old hadrosaur, or duck-billed dinosaur.

Dr. Mary Schweitzer, associate professor of marine, earth and atmospheric sciences at NC State with a joint appointment at the N.C. Museum of Natural History, along with colleague Dr. John Asara from the Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, Dr. Chris Organ from Harvard University, and a team of researchers from Montana State University, the Dana Farber Cancer Institute, and Matrix Science Ltd. analyzed the hadrosaur samples.

The researchers’ findings appear in the May 1 edition of Science.

Schweitzer and Asara had previously used multiple methods to analyze soft tissue recovered from a 68 million-year-old Tyrannosaurus Rex. Mass spectrometry conducted on extracts of T. rex bone supported their theory that the materials were original proteins from the dinosaur.

These papers were controversial, and the team wanted to demonstrate that molecular preservation of this sort in dinosaurs was not an isolated event. Based upon other studies, they made predictions of the type of environment most likely to favor this preservation, so Schweitzer and students, working with Jack Horner’s Museum of the Rockies field crews, went looking for a dinosaur preserved under a lot of sandstone. Using specially designed field methodology, with the aim of avoiding environmental exposure until the fossil was inside the lab, they set aside the femur from a Brachylophosaurus canadensis – a hadrosaurid dinosaur–buried deeply in sandstone in the Judith River formation.

“This particular sample was chosen for study because it met our criteria for burial conditions of rapid burial in deep sandstones,” Schweitzer says. “We know the moment the fossil is removed from chemical equilibrium, any organic remains immediately become susceptible to degradation. The more quickly we can get it from the ground to a test tube, the better chance we have of recovering original tissues and molecules.”

Preliminary results seemed to confirm their methodology, as Schweitzer found evidence of the same fibrous matrix, transparent, flexible vessels and preserved microstructures she had seen in the T. rex sample in the much older hadrosaur bone. Because of the rapidity of analyses after the bones were removed, the preservation of these dinosaurian components was even better. The samples were examined microscopically via both transmitted light and electron microscopes to confirm that they were consistent in appearance with collagen. They were also tested against antibodies that are known to react with collagen and other proteins.

Next, Schweitzer sent the samples to Asara’s lab to be analyzed by a new mass spectrometer, capable of producing sequences with much greater resolution than the one used previously. Mass spectrometry identifies molecules by measuring the mass of the protein fragments, or peptides, that result from breaking apart molecules with specific enzymes. The masses are measured with very high mass accuracy, and then compared with existing databases of proteins to achieve a best fit. In this way, Asara was able to identify eight collagen peptides from the hadrosaur, then confirm the identity of the sequences by comparing them both to synthesized fragments and to modern proteins analyzed under the same conditions. Once sequence data were validated, they were evaluated by Organ who determined that, like T.rex, this dinosaur’s protein family tree is closer to that of modern birds than that of alligators.

All results were independently verified by researchers at BIDMC, Montana State University, Harvard University, the Dana Farber Cancer Institute, and Matrix Science of London.

The data were consistent with that of the earlier T. rex analysis, confirming that molecular preservation in fossilized remains is not an isolated event. “We used improved methodology with better instrumentation, did more experiments and had the results verified by other independent labs,” Schweitzer says. “These data not only build upon what we got from the T. rex, they take the research even further.”

Schweitzer hopes that this finding will lead to more work by other scientists on these ancient molecules.

“I’m hoping in the future we can use this work as a jumping off point to look for other proteins that are more species-specific than collagen. It will give us much clearer insight into all sorts of evolutionary questions.”

Contact: Tracey Peake – tracey_peake@ncsu.edu – 919-515-6142 – North Carolina State University###

 source: eurekalert

———————–

An abstract of the paper follows.

“Biomolecular Characterization and Protein Sequences of the Campanian Hadrosaur Brachylophosaurus canadensis
Authors: Mary H. Schweitzer, North Carolina State University and the N.C. Museum of Natural Sciences; John M. Asara, Beth Israel Deaconess Medical Center and Harvard Medical School, et al.
Published: May 1, 2009 in Science

Abstract: Molecular preservation in non-avian dinosaurs is controversial. We present multiple lines of evidence that endogenous proteinaceous material is preserved in bone fragments and soft tissues from an 80 million year old Campanian hadrosaur, Brachylophosaurus canadensis (MOR 2598). Microstructural and immunological data are consistent with preservation of multiple bone matrix and vessel proteins, and phylogenetic analyses of Brachylophosaur collagen sequenced by mass spectrometry robustly support the bird-dinosaur clade, consistent with an endogenous source for these collagen peptides. These data complement earlier results from Tyrannosaurus rex (MOR 1125) and confirm that molecular preservation in Cretaceous dinosaurs is not a unique event.

maggio 2, 2009 Posted by | - Ornitopodi, - R. Dinosauri, 1 Cretaceo, America Northern, An. Vertebrates, Articolo sc. di riferimento, Bl - Top posts, Mesozoic, P - Preservazione eccezionale, Paleontology / Paleontologia, X - Science | , , , , , | Lascia un commento